我的主页      中南大学      机电学院      
登录   |   English
刘春辉


个人简介
刘春辉

电子邮件:chunhuiliu@csu.edu.cn 职称:副教授

地址:中南大学新校区中铝科技大楼(机电院)

围绕“基于微观组织控制的智能制造”开展研究:轻质构件精密成形(轻合金热成形的组织演变规律、建模和形性协同控制, 材料制备和成形一体化制造及装备设计; 高性能轻合金制造(轻合金热加工与性能调控,微观组织演变过程,现代物理冶金学); 微纳测试,分析和加工(电子显微学方法、技术和理论,原位观测和分析,超高精度电子束加工)。已经在International Journal of Plasticity、Scientific Reports、Scripta materialia、Materials Science and engineering:A 、Materials & Design、Acta materialia、Ultramicroscopy、International Journal of Advanced Manufacturing、International journal of Light materials and Manufacture、金属学报、中国有色金属学报和电子显微学报等杂志发表近50篇文章,获批4项国家发明专利,另有12项专利在审。过去几年间,在国际新成形技术大会(ICNFT)、国际铝合金大会(ICAA)、国际显微学大会、先进材料制备加工(Thermec)会议和中国塑性工程年会在内的多个国际和国内学术会议上做学术报告。担任Scripta materialia, MSEA,Materials and Design、MMTA、International journal of Light materials and Manufacture和Corrosion science等多个国际杂志审稿人。目前在“大构件复杂制造”战略先导方向研究团队,主持和参与多项国家级科研课题,研究成果主要应用在航空航天、汽车和微电子制造等领域。欢迎各位本科生和研究生加入本课题组,我们会帮助你全方位成长,一起为中国“制造”走向“智造”做贡献!!


近期论文

1. Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al-Cu-Li alloy. Journal of Alloys and Compounds, 2019 (790): 8-19.

2. The formation of a new intermediate phase and its evolution toward θ' during aging of pre-deformed Al-Cu alloys. Journal of Materials Science & Technology 2019 (35): 885-890.

3. A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science and Engineering: A 2019 (756): 284-290.

4. Toughening of nanocrystalline materials by nanograin rotation. Materials Today Communications 2019 (19): 297-299.

5. Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy: Experiments and modeling. International Journal of Plasticity 110 (2018) 183-201.

6. Multiple precipitation reactions and formation of θ'-phase in a pre-deformed Al–Cu alloy. Materials Science & Engineering A 733 (2018) 28–38.

7. Solute Sn-induced formation of composite β′/β″ precipitates in Al-Mg-Si alloy. Scripta Materialia, 2018 (155): 68-72.

8. In-situ STEM imaging of growth and phase change of individual CuAlX precipitates in Al alloy. Scientific Reports, 2017(7): 2184 1-9.

9. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing, Ultramicroscopy, 2017(181): 165-172.

10. Natural-ageing-induced reversal of the precipitation pathways in an Al-Mg-Si alloy, Scripta Materialia, 2016 (115): 150-154.

11. Mechanical properties enhanced by deformation-modified precipitation of θ'-phase approximants in an Al-Cu alloy, Materials Science & Engineering A 2016 (676): 138-145.

12. Enhancing electrical conductivity and strength in Al alloys by modification of conventional thermo-mechanical process, 2015, Materials and Design 2015 (87): 1-5.

13. The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys, Materials Science & Engineering A, 2015 (642): 241-248.

14. A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys, Materials and Design, 2014 (54): 144-148.

15. Multiple silicon nanotwins formed on the eutectic silicon particles in Al–Si alloys, Scripta materialia, 2011(64): 339-342.

16. Hierarchical nanostructures strengthen Al-Mg-Si alloys processed by deformation and aging, Materials Science & Engineering A, 2013 (585): 233–242.

17. The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio, Materials Science & Engineering A, 2014 (606):187–195.

18. The negative effect of solution treatment on the age hardening of A356 alloy, Materials Science & Engineering A, 2013 (566): 112–118.